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Symplectic integrators evolve dynamical systems according to modified Hamiltonians whose error terms are
also well-defined Hamiltonians. The error of the algorithm is the sum of each error Hamiltonian’s perturbation
on the exact solution. When symplectic integrators are applied to the Kepler problem, these error terms cause
the orbit to precess. In this work, by developing a general method of computing the perihelion advance via the
Laplace-Runge-Lenz vector even for nonseparable Hamiltonians, I show that the precession error in symplectic
integrators can be computed analytically. It is found that at leading order, each paired error Hamiltonians cause
the orbit to precess oppositely by exactly the same amount after each period. Hence, symplectic corrector, or
process integrators, which have equal coefficients for these paired error terms, will have their precession errors
cancel at that order after each period. With the use of correctable algorithms, both the energy and precession
error are of effective order n+2 where n is the nominal order of the algorithm. Thus the physics of symplectic
integrators determines the optimal algorithm for integrating long-time periodic motions.
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I. INTRODUCTION

Numerical methods for solving physical problems are
generally not expected to contain interesting physics. They
are viewed as mere means, or recipes, of arriving at a needed
numerical solution. This is because most numerical methods
are based on matching Taylor series, whose error terms have
little to do with physics. By contrast, symplectic integrators
solve dynamical problems by approximating the original
Hamiltonian by a modified Hamiltonian whose error terms
are also well-defined Hamiltonians. In the past, these error
terms are just formal entities destined to be eliminated by
order conditions, and are rarely studied in their own right.
Here, we show that a comprehensive study of the error
Hamiltonians in the Kepler problem gives insights into the
working of symplectic integrators and makes manifest, ways
of optimizing them.

Symplectic integrators �SI� �1–3� despite their excellent
conservation properties, are not immune from the fundamen-
tal phase error when solving the Kepler problem. While the
energy error is periodic, the phase error can accumulate and
grow linearly with time �4–6�. One manifestation of the
phase error is the “perihelion advance” of the numerically
computed elliptical orbit. This error is particularly pernicious
when contemplating long-time integration of periodic mo-
tions. No matter how small the initial time step, the orbital
precession error can accumulate after each period and grow
linearly without bound.

In the Kepler problem, the energy error causes the length
of the Laplace-Runge-Lenz �LRL� vector to oscillate and the
phase error causes the vector to rotate �7�. While the energy
error has been studied extensively, little is known about the
phase error and its cause. This is reflected in the historical
development of symplectic integrators; most early integra-
tors are not well tuned for the reduction of phase errors. For
example, when solving the Kepler problem, the first fourth-
order, Forest-Ruth �8� algorithm has a much larger preces-
sion error per period than the standard fourth-order Runge-
Kutta algorithm �7�. Even the improved McLachlan

integrator �9� has a precession error not much better than that
of Runge-Kutta �10�.

In this work, we present a detailed study of the precession
error due to each error Hamiltonian �up to fourth order� on
Kepler’s orbit. Based on Sivardière’s method �11� of com-
puting the rotation of the LRL vector, we develop a compre-
hensive treatment of perihelion advance due to any perturb-
ing Hamiltonian, including nonseparable ones. We show
analytically that paired error terms of the form �T ,Q� and
�V ,Q� rotate the LRL vector oppositely by exactly the same
amount after each period. Here T and V are the kinetic and
potential energy functions of the Kepler Hamiltonian,
�A ,B�’s are Poisson brackets, and Q’s are higher-order Pois-
son brackets of T and V. Algorithms with equal coefficients
for these paired error terms would therefore have their pre-
cession errors precisely canceled after each period. These
algorithms have been previously identified as symplectic cor-
rector �12–14�, or process �15–17� algorithms. Symplectic
corrector algorithms were originally derived for their com-
putational efficiency; this work further identifies them as a
class of integrators with periodic precession errors. Thus the
physical effects of these error Hamiltonians provide the
needed insight for devising optimal integrators with periodic
energy and phase conservation.

For the Kepler problem, highly specialized algorithms
�18,19� can be devised to exactly conserve energy and the
rotation of the LRL vector. However, these algorithms do not
limit the growth of the phase error in time. At a given time,
the particle is at the wrong point of the trajectory, despite the
fact it is constrained to move on the correct trajectory. Also,
the phase errors in these algorithms are only second order in
�t. This work solves the Kepler problem using corrector al-
gorithms up to fourth order. Since both the energy and the
precession error return to zero after each period, the effective
order �20� for both errors is sixth order.

In the next section, we will summarize needed results on
the error structure of symplectic integrators. This is followed
by Sec. III where we derive analytical expressions for the
rotation angle of the LRL vector per period due to error
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Hamiltonians up to the fourth order. In this work, we system-
atize and generalize Sivadière’s method �11� of computing
orbital precession to include any angular-momentum-
conserving Hamiltonians, even nonseparable ones. In Sec.
IV, we numerically verify these theoretical predictions. In
Sec. V, we derive second- and fourth-order corrector algo-
rithms with demonstrated periodic precession errors. Some
conclusions and directions for future research are given in
Sec. VI.

II. ERROR HAMILTONIANS OF SYMPLECTIC
INTEGRATORS

Symplectic integrators for evolving the standard Hamil-
tonian

H�q,p� = T�p� + V�q� with T�p� =
1

2
pipi, �1�

can be derived �1� by approximating the system’s short-time
evolution operator via a product of elemental evolution op-

erators e�T̂ and e�V̂ via

e��T̂+V̂� � �
i=1

N

eti�T̂evi�V̂, �2�

where each Lie operator �21� Q̂ associated with variable Q
acting on any other dynamical variable W is defined by the
Poisson bracket

Q̂W = �W,Q� . �3�

For a given set of factorization coefficients �ti ,vi�, the prod-
uct on the right-hand side of Eq. �2� then produces an or-
dered sequence of displacements,

pi��� = e�V̂pi = pi − �
�V

�qi
,

qi��� = e�T̂qi = qi + �
�T

�pi
, �4�

which defines the resulting splitting algorithm. For a more
detailed description, see Refs. �1,10�. For the study of time-
reversible Hamiltonians, we will only consider time-
reversible, symmetric factorization schemes such that either
t1=0 and vi=vN−i+1, ti+1= tN−i+1, or vN=0 and vi=vN−i, ti
= tN−i+1. �The use of asymmetric schemes to study time-
reversible Hamiltonians may introduce unphysical and un-
necessary distortion �22� of the phase space at finite �t.�

The product of operators in Eq. �2� can be combined by
use of the Baker-Campbell-Hausdorff �BCH� formula to give

�
i=1

N

eti�T̂evi�V̂ = e�ĤA, �5�

where ĤA is the Hamiltonian operator of the algorithm. By
the repeated use of Eq. �3�, one can deduce the Hamiltonian

function HA corresponding to the Lie operator ĤA,

HA = eTT + eVV + �2�eTTV�T2V� + eVTV�VTV��

+ �4
„eTTTTV�TT3V� + eVTTTV�VT3V�

+ eTTVTV�T�TV�2� + eVTVTV�V�TV�2�… + ¯ , �6�

where �TTV�= �T , �T ,V��, �T�TV�2�= �T , �T , �V , �T ,V����,
etc., are condensed Poisson bracket notations. This is the
Hamiltonian function conserved by the algorithm. The error
coefficients eT, eV, eVTVTV, etc., are algorithm specific, calcu-
lable from knowing the �ti ,vi� coefficients �23�. In particular,

eT = 	
i=1

N

ti, eV = 	
i=1

N

vi. �7�

Thus all algorithms must have eT=1=eV in order to repro-
duce the original Hamiltonian. This will always be assumed.
The Poisson brackets reflect properties of the original Hamil-
tonian �10�,

�TTV� = piVijpj ,

�VTV� = − ViVi,

�T�TV�2� = − 2pi�VikjVk + VikVkj�pj ,

�V�TV�2� = 2ViVijVj ,

�TT3V� = pipjpkplVijkl,

�VT3V� = − 3pipjVijkVk. �8�

To emphasize that these error terms are Hamiltonians, we
will also denote HTTV= �T , �T ,V��, HTTTTV= �TT3V�, etc.

For a central potential

V�q� = V�r� , �9�

one can easily verify that

Vi = V�r̂i,

Vij = U�ij + �V� − U�r̂ir̂ j , �10�

Vijk = U���ijr̂k + � jkr̂i + �kir̂ j� + �V� − 3U��r̂ir̂ jr̂k, �11�

Vijkl = r−1U���ij�kl + � jk�il + �ki� jl� + �V�� − 6U�

+ 3r−1U��r̂ir̂ jr̂kr̂l + �U� − r−1U����ijr̂kr̂l + � jkr̂ir̂l

+ �kir̂ir̂l + �ilr̂ jr̂k + � jlr̂kr̂i + �klr̂ir̂ j� , �12�

where we have defined

U�r� =
V��r�

r
. �13�

The forms �10�–�12� are arranged such that the derivatives
are manifestly correct in one dimension. For the Kepler
problem, where

V�r� = −
1

r
, �14�

the error Hamiltonians up to the fourth order are
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HTTV = r−3��ij − 3r̂ir̂ j�pipj , �15�

HVTV = − r−4, �16�

HTTVTV = 4r−6��ij − 6r̂ir̂ j�pipj , �17�

HVTVTV = − 4r−7, �18�

HTTTTV = − 9r−5
�ij�kl − 10�ijr̂kr̂l +
35

3
r̂ir̂ jr̂kr̂l�pipjpkpl,

�19�

HVTTTV = 9r−6��ij − 3r̂ir̂ j�pipj . �20�

Note that HTTV, HTTVTV, HVTTTV are all quadratic in p char-
acterized by two numbers n and �,

h�n,�� = r−n��ij − �r̂ir̂ j�pipj . �21�

The case of n=� will be shown to be especially simple.

III. PERIHELION ADVANCES AS PERTURBATIVE
ERRORS

The basic idea of Sivardière’s method �11� of determining
the precession of the Kepler orbit via the rotation of the LRL
vector

A = p � L − r̂ , �22�

where r̂=r /r, is to extract the time derivative of A in the
form of

Ȧ = � � A , �23�

thereby identifying the precession angular frequency �, and
to obtain the precession angle over one period by integrating

�� = �
0

P

��t�dt , �24�

where P is the period. Since it is only necessary to compute
the precession error to leading orders, one can use the unper-
turbed Kepler orbit in doing the time integration above. For
our purpose, we will generalize Sivardière’s approach to treat
arbitrary, but angular-momentum-conserving forces, includ-
ing nonseparable Hamiltonians.

For any Hamiltonian that leaves L invariant,

Ȧ = ṗ � L +
r

r3 � �r � ṙ� . �25�

For the Kepler Hamiltonian,

H0 =
1

2
p2 −

1

r
, �26�

ṙ = p, ṗ = −
r

r3 ⇒ Ȧ = 0. �27�

If Eq. �26� is perturbed by a central force of the form

ṗ = − �v�r� = f�r�r̂ , �28�

then one has

Ȧ = − f�r�L � r̂ . �29�

Without loss of generality, we can always assume that the
unperturbed A lies along the x axis such that A=ei, whose
length is the eccentricity e of the orbit. Thus we can cast Eq.
�29� in the form �23� with

� = − f�r�
L

e
cos���L̂ , �30�

and

�� =
1

e
�

0

2	

„− f�r�r2
…cos���d� , �31�

where we have used L=r2�̇. If f�r� can be expanded in in-
verse powers of r via

− f�r�r2 = 	
n


nr−n, �32�

where n=0, 1, 2, etc., then by the use of

1

r
=

1

P
�1 + e cos �� with P = L2 = a�1 − e2� , �33�

where a is the semimajor axis, one obtains the closed-form
result

�� = 	
n


n

PnCn�e� , �34�

where we have defined

Cn�e� =
1

e
�

0

2	

�1 + e cos ��n cos �d� . �35�

In Table I, we list the required integral Cn�e� up to n=8.
Notice that for an inverse-square force, n=0 and ��=0. By
partial integration, it is easy to see that

Sn�e� = �
0

2	

�1 + e cos ��n sin2���d� =
1

n + 1
Cn+1�e� .

�36�

From this, one can also derive the following recursion rela-
tion for Cn�e�,


1 +
1

n + 1
�Cn+1 = 
2 +

1

n
�Cn − �1 − e2�Cn−1. �37�

For HVTV, corresponding to −f�r�r2=4r−3 we have

��VTV =
4

P3C3�e� =
4 � 3	

P3 
1 +
1

4
e2� . �38�

For HVTVTV, corresponding to −f�r�r2=4�7r−6, we have
similarly,
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��VTVTV =
4 � 7

P6 C6�e� =
4 � 7 � 6	

P6 
1 +
5

2
e2 +

5

8
e4� .

�39�

The other perturbing Hamiltonians are not local poten-
tials, but are nonseparable Hamiltonians with angular-
momentum-conserving equations of motion,

ṗ = f�r,p�r̂ + g�r,p��p · r�p ,

ṙ = − g�r,p��p · r�r̂ + h�r,p�p . �40�

In this case, we have

Ȧ = − f�r,p�L � r̂ + g�r,p��p · r�p � L −
h�r,p�

r2 L � r̂ .

�41�

The first and the third term can be treated as discussed above.
It is only necessary to expand −fr2 and −h in inverse powers
of r and invoke Eq. �34�. The middle term requires further
attention. We rewrite it as

Ȧ = g�r,p��p · r��A + r̂� . �42�

The first term above has the exact solution

A�t� = exp
�
0

t

g�r,p��p · r�dt�A�0� , �43�

which induces no rotation on A and can be ignored. For the

second term, relative to L̂� r̂, r̂ lags 90° behind, so that the
corresponding � is given by

� = g�r,p��p · r�
1

e
cos
� −

	

2
�L̂ , �44�

with

�� =
1

e
�

0

P

g�r,p��p · r�sin���dt . �45�

In doing the time integration, one can use the unperturbed
Kepler orbit, with p ·r=rṙ and

ṙ

r2 =
e

P
sin����̇ . �46�

Hence,

�� =
1

P�0

2	

g�r,p�r3 sin2���d� . �47�

If g can be expanded in inverse power of r such that

gr3 = 	
n

�nr−n, �48�

then again we have the closed-form result

��g = 	
n

�n

Pn+1Sn�e� = 	
n

�n

Pn+1

Cn+1�e�
n + 1

. �49�

For the quadratic Hamiltonian h�n ,��, we have equations
of motion of the form �41� with

− fr2 = − nr−n+1p2 + ��n + 2�r−n−1�p · r�2,

gr3 = 2�r−n+1,

− h = − 2r−n. �50�

The precession angle from r3g and −h can be read off di-
rectly.

��g = 2�
Sn−1�e�

Pn = 2
�

n

Cn�e�
Pn , �51�

��h = − 2
Cn�e�
Pn . �52�

These two contributions exactly cancel if n=�.
Since the time integration can be done along the unper-

turbed Kepler orbit, we can replace

p2 =
2

r
−

1

a
, �p · r�2 = p2r2 − L2, �53�

and reduce −fr2 to only a function of r,

TABLE I. Explicit expressions for the function Cn�e�.

n Cn�e�

0 0

1 	

2 2	

3
3	
1 +

1

4
e2�

4
4	
1 +

3

4
e2�

5
5	
1 +

3

2
e2 +

1

8
e4�

6
6	
1 +

5

2
e2 +

5

8
e4�

7
7	
1 +

15

4
e2 +

15

8
e4 +

5

64
e6�

8
8	
1 +

21

4
e2 +

35

8
e4 +

35

64
e6�
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− fr2 = 2���n + 2� − n�r−n −
1

a
���n + 2� − n�r−n+1

− ��n + 2�L2r−n−1, �54�

yielding

�� f =
1

Pn �2���n + 2� − n�Cn − ���n + 2� − n��1 − e2�Cn−1

− ��n + 2�Cn+1� . �55�

By the use of recursion relation �37�, this can be simplified to

�� f =
1

Pn

1 −
�

n
�n + 2��Cn + �� − n�

�n + 2�
n + 1

Cn+1� .

�56�

For �=n, we just have

�� f = −
1

Pn �n + 1�Cn�e� . �57�

Combining results �51�, �52�, and �57� for HTTV ��=n=3�,
we have

��TTV = −
4

P3C3�e� , �58�

which is the exact negative of ��VTV. For HTTVTV ��=n=6�,
we have

��TTVTV =
4�− 7�

P6 C6�e� , �59�

which is the exact negative of ��VTVTV.
For HVTTTV, n=6 and �=3, we have

��VTTTV = 9��� f + ��g + ��h�

= 9
 1

P6
− 3C6 −
24

7
C7� +

C6

P6 − 2
C6

P6�
= −

9 � 4 � 12	

P6 
1 +
25

8
e2 +

5

4
e4 +

5

128
e6� .

�60�

For HTTTTV, we have

− fr2 = 9 � 5r−4�p4 − 14p2�p · r̂�2 + 21�p · r̂�4� ,

gr3 = 3 � 4 � 5r−4�7�p · r̂�2 − 3p2� ,

− h = 9 � 4r−5�p2 − 5�p · r̂�2� . �61�

By use of Eq. �53�, all can be expressed in terms of r, yield-
ing correspondingly,

�� f =
9 � 8 � 5

P6 �4C6 − 4�1 − e2�C5 + �1 − e2�2C4�

+
9 � 7 � 5

P6 �3C8 − 8C7 + 4�1 − e2�C6� ,

��g =
3 � 4

P6 
20

3
C6 − 4�1 − e2�C5 − 5C7� ,

��h =
9 � 4

P6 �− 8C6 + 4�1 − e2�C5 + 5C7� . �62�

The repeated use of the recursion relation �37� to eliminate
all terms except C6 and C7 simplifies the above to

�� f =
9 � 4

P6 
C6 +
4

7
C7� ,

��g =
3 � 4

P6 
− 2C6 −
3

7
C7� ,

��h =
3 � 4

P6 
2C6 +
9

7
C7� , �63�

finally giving

��TTTTV = ��� f + ��g + ��h� =
9 � 4

P6 
C6�e� +
6

7
C7�e�� ,

�64�

which is the exact negative of ��VTTTV.

IV. NUMERICAL VERIFICATIONS

By monitoring the rotation of the LRL vector of a given
algorithm when solving the Kepler problem, one can directly
check the analytical results of the last section. For this pur-
pose, it is useful to employ algorithms with only a single
error Hamiltonian. For example, the second-order algorithm
I,

TI��� = exp
1

6
�V̂�exp
1

2
�T̂�exp
2

3
�V̂�

�exp
1

2
�T̂�exp
1

6
�V̂� �65�

has modified Hamiltonian �24�,

HA
I = H0 −

�2

72
HVTV + O��4� . �66�

Algorithm II, obtained by interchanging T̂↔ V̂, has Hamil-
tonian

HA
II = H0 +

�2

72
HTTV + O��4� . �67�

By running both algorithms at smaller and smaller �, and
dividing the rotation angle of the LRL vector after one period
by �2 /72 until convergence is seen, we can directly test the
predicted result �38�. For starting values of r= �10,0� and
p= �0,1 /10�, such that P=L2=1 and e=0.9, we have the
theoretical result

��VTV = − ��TTV = 45.33318. �68�

PHYSICS OF SYMPLECTIC INTEGRATORS: PERIHELION… PHYSICAL REVIEW E 75, 036701 �2007�

036701-5



Algorithm I at �= P /10 000 with double precision gives

��I = − 45.33157. �69�

Algorithm II at the same step size produces

��II = − 45.33316. �70�

Both are in excellent agreement with the theoretical value,
including the sign. Each algorithm causes the LRL vector
�and hence the orbit� to rotate differently in time, but at the
end of the period, both algorithms have rotated the LRL
vector by the same amount. This is shown in Fig. 1.

To test HTTTTV and HVTTTV, we consider the following
symmetric, fourth-order forward �23� algorithm,

T = ¯ exp��v0V̂ + �3u0Û�exp��t1T̂�

�exp��v1V̂ + �3u1Û�exp��t2T̂�

�exp��v2V̂ + �3u2Û� , �71�

where we have only indicated operators from the center to
the right and where

viV̂ + �2uiÛ �72�

indicates that one should update the momentum by comput-
ing the force from the effective potential �24,25�

viV + �2ui�V,�T,V�� = viV − �2ui��V�2. �73�

Here, U= �V , �T ,V�� and has nothing to due with the function
defined in Sec. II. For positive coefficients �ti� and �vi�,

t1 =
3

10
, t2 =

1

5
, v0 =

8

27
, v1 =

125

432
, v2 =

1

16
,

�74�

u0 =
3121

1 710 720
, u1 =

1145

2 737 152
, u2 =

409

1 520 640
,

�75�

we have algorithm III with Hamiltonian

HA
III = H0 +

�4

207 360
HVTTTV + O��6� . �76�

This forward time-step algorithm with only a single fourth-
order error term can be easily converted to a sixth-order for-
ward algorithm �23� by solving HVTTTV directly as discussed
below. For a different set of coefficients

t1 =
3

10
, t2 =

1

5
, v0 =

2

27
�4�3 − 3� , �77�

v1 =
25

108
��3 − 3�, v2 =

1

12
��3 − 1� ,

u0 =
1

98 820
�943 − 461�3�, u1 =

5

158 112
�481 − 266�3� ,

�78�

u2 =
1

87 840
�617 − 344�3� ,

we have algorithm IV with Hamiltonian

HA
IV = H0 −

�4

14 400
�7 − 4�3�HTTTTV + O��6� . �79�

For the same initial condition as before, we have

��TTTTV = − ��VTTTV = 5933.72. �80�

For III and IV, we increase � to avoid machine errors. Run-
ning both algorithms at �=T /5000 gives

��III = − 5933.77 and ��IV = − 5933.68. �81�

Both are in excellent agreement with the predicted value
�80�. The rotation of the LRL vector in time is given in Fig.
2. Despite the more complicated structure of the fourth-order
Hamiltonians, the resulting rotations of the LRL vector are
very similar to the second-order case. The only discernible
difference is that since the fourth-order Hamiltonians are
more singular, the LRL vector rotates over a much narrower
range near midperiod.

It has been shown in Ref. �23� that for positive coeffi-
cients, it is not possible to have both eTTTTV and eVTTTV van-
ish and hence not possible to isolate the error Hamiltonian
HTTVTV or HVTVTV by itself. �Using negative coefficients
would entail too many operators with only numerical, rather
than analytical coefficients.� However, since the effects of
HTTTTV and HVTTTV have been verified, one can check the
theoretical results for HTTVTV and HVTVTV in combination
with HTTVTV and HVTVTV in a general fourth-order algorithm.
We will do this in the next section. For future reference, for
the same initial condition, one has

FIG. 1. Rotation of the Laplace-Runge-Lenz vector due to
second-order error Hamiltonian −HVTV and HTTV in algorithms I
and II. Each algorithm rotates the LRL vector differently in time,
but by exactly the same amount after one period. Most of the rota-
tion takes place near the midperiod. The solid line gives the theo-
retical value of −45.333 18.
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− ��TTVTV = ��VTVTV = 1812.98. �82�

For the second- and fourth-order algorithms considered in
this section, the error coefficients eVTV, eTTV and eVTTTV,
eTTTTV, are of opposite signs, resulting in algorithms that ro-
tate the LRL vector in the same direction. This is not acci-
dental, but a basic feature of forward symplectic algorithms
to be discussed in the next section.

V. SYMPLECTIC CORRECTOR ALGORITHMS

A general second-order, time-reversible algorithm has
modified the Hamiltonian,

HA = H0 + �2�eTTVHTTV + eVTVHVTV� + O��4� . �83�

For example, the velocity form of the Verlet algorithm

TVV��� = exp
1

2
�V̂�exp��T̂�exp
1

2
�V̂� �84�

has eTTV=1/12 and eVTV=1/24. This allows us to immedi-
ately predict that when it is used to solve the Kepler prob-
lem, its precession angle per period, after being divided by
�2, must be ��TTV /24=−1.8888. This is illustrated in Fig. 3.
In order to eliminate this second-order precession error, one
must devise algorithms with eTTV=eVTV. This requirement is
the same as for being a second-order symplectic corrector
�12–14�, or process �15–17� algorithm. More generally, a
symplectic integrator T of order n is a corrector kernel algo-
rithm if it is such that the similarity-transformed algorithm
STS−1 is of order n+2, where S is the corrector or processor.
Thus corrector or processor algorithms are of Butcher’s ef-
fective order �20� n+2. This is possible only for T having
equal error coefficients �12,14� for each pair of error terms
�T ,Q� and �V ,Q�. When corrector algorithms are applied to
the Kepler problem, the precession error in each order would

cancel after each period and both the energy and the preces-
sion error would be periodic in time.

However, it is not easy to satisfy this second-order “cor-
rectability” requirement of

eTTV = eVTV. �85�

If either �ti��0 or �vi��0, Chin �14� and Blanes-Casas �26�
have proved that it is not possible to have eTTV=eVTV. More-
over, a recent theorem �27� has precisely stipulated that for
positive factorization coefficients, eVTV and eTTV must be
separated by a finite, calculable gap. If eTTV=0, then eVTV

0 and if eVTV=0, then eTTV�0. However, it is easy to force
eVTV to equal eVTV if HVTV= �V , �T ,V�� can be directly added
to the potential as done in Eq. �73�. For example, the
Takahashi-Imada �TI� integrator �28�

TTI = exp
1

2
�T̂�exp
�V̂ +

1

24
�3
†V̂,�T̂,V̂�‡�exp
1

2
�T̂� ,

�86�

has eTTV=eVTV=−1/24=−0.041 666 7. Its LRL rotation
angle in solving the Kepler problem is shown in Fig. 3. The
precession error, like that of the energy error, now returns to
zero. If �ti ,vi� are allowed to be negative, then the following
corrector algorithm can also be used:

TNF = ¯ exp��v0V̂�exp��t1T̂�exp��v1V̂�exp��t2T̂� ,

�87�

with

v0 =
1

2 − 21/3 , t2 =
1

2
v0, t1 =

1

2
− t2, v1 = t1, �88�

and eTTV=eVTV=−0.047 081 7. Its precession error is also
shown in Fig. 3, denoted as the nonforward �NF� algorithm.
Since its error coefficients are very close to that of TI, its

FIG. 2. Rotation of the Laplace-Runge-Lenz vector due to
fourth-order error Hamiltonians HVTTTV and −HTTTTV. Because the
fourth-order error terms are more singular, the rotation takes place
over a narrower range near midperiod. The solid line gives the
theoretical value of −5933.72

FIG. 3. Rotation of the Laplace-Runge-Lenz vector for three
second-order symplectic algorithms: velocity-Verlet �VV�,
Takahashi-Imada �TI�, and the nonforward corrector algorithm
�NF�. The solid line gives the theoretical rotation value of the VV
algorithm: ��TTV /24=−1.8888.
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behavior is also very similar. Note that this nonforward al-
gorithm requires three force evaluations �the minimum nec-
essary�, which are not very efficient. For three force evalua-
tions, one can have a fourth-order algorithm without any
second-order errors �8�.

For a fourth-order time-reversible algorithm, the modified
Hamiltonian is

HA = H0 + �4�eTTTTVHTTTTV + eVTTTVHVTTTV + eTTVTVHTTVTV

+ eVTVTVHVTVTV� + O��6� . �89�

By knowing the error coefficients eTTTTV, eVTTTV, eTTVTV, and
eVTVTV, the precession error of any fourth-order algorithm
can be predicted. For example, the well-known Forest-Ruth
algorithm �8� has the same form as Eq. �87�, but with coef-
ficients

t2 =
1

2
v1, t1 =

1

2
− t2, v1 =

1

2 − 21/3 , v0 = − 21/3v1,

�90�

error coefficients

eTTTTV = − 0.000 413 76, eVTTTV = − 0.008 681 65,

eTTVTV = 0.007 026 60, eVTVTV = − 0.026 044 94, �91�

and precession error

��FR = �eTTTTV − eVTTTV���TTTTV + �eVTVTV − eTTVTV���VTVTV

= 49.0593 − 59.9580 = − 10.8987, �92�

which is in good agreement with the observed error �7� of
−10.8890 computed at �= P /10 000. In contrast, the forward
algorithm C �24�,

TC = ¯ exp��v0V̂ + �3u0Û�exp��t1T̂�

�exp��v1V̂ + �3u1Û�exp��t2T̂� , �93�

where

v0 =
1

4
, v1 =

3

8
, u0 =

1

192
, u1 = 0, t1 =

1

3
, t2 =

1

6
,

�94�

has error coefficients

eTTTTV = −
7

51 840
= − 0.000 135,

eVTTTV = −
1

8640
= − 0.000 116,

eTTVTV = −
7

23 040
= − 0.000 304, �95�

eVTVTV = −
11

46 080
= − 0.000 239,

and a precession error of only

��C = �eTTTTV − eVTTTV���TTTTV + �eVTVTV − eTTVTV���VTVTV

= − 0.114 462 + 0.118 033, �96�

=0.003 570, �97�

which is more than three order-of-magnitudes smaller. This
theoretical value is again in excellent agreement with the
algorithm’s actual error of 0.003 565 at �= P /10 000. Algo-
rithm C uses only one more force gradient than FR. We have
previously demonstrated �10� that algorithm C’s precession
error is smaller than the recent fourth-order symplectic inte-
grator proposed by McLachlan �9�, Blanes and Moan �29�
�also recommended in Ref. �2�� and Omelyan, Mryglod, and
Folk �30,31�.

For a fourth-order algorithm, the precession error will re-
turn exactly to zero only if the algorithm is correctable with

eTTTTV = eVTTTV, �98�

eTTVTV = eVTVTV. �99�

This partly explains why algorithm C is so much better than
algorithm FR: its error coefficients are more nearly equal.
However, its unusually small precession error is due also to
the near cancellation of two distinct error types in Eq. �96�.

One special method of enforcing equalities �98� and �99�
is to redistribute the gradient term in algorithm C. For ex-
ample, by changing only

u0 = �1 − ��
1

192
and u1 =

�

2

1

192
, �100�

with

� =
9

10
−

4

15

��TTTTV�e�
��VTVTV�e�

, �101�

the total precession error will vanish for a given initial
choice of the eccentricity e. For e=0.9, we have

� = 0.027 225 479. �102�

Numerically, the precession error of this tailored algorithm
returns to ��=−2.11�10−6 after one period. Since �=0 cor-
responds to algorithm C, this algorithm differs only slightly
from C. However, the slight change is essential for forcing
the precession error to zero. Its precession error, referred to
as C�, is compared to that of C in Fig. 4. This tailored algo-
rithm is not a general algorithm because it requires a priori
knowledge of the eccentricity of the orbit.

For a general corrector algorithm, one must enforce Eqs.
�98� and �99� without requiring any prior knowledge. As in
the second-order case, the equality �98� cannot be satisfied
for forward algorithms. One must therefore keep one of the
two error Hamiltonians. We keep the simpler HVTTTV and
generalize Eq. �93� to

TS = ¯ exp��v0V̂ + �3u0Û�exp��t1T̂�

�exp��v1V̂ + �3u1Û�exp��t2T̂�

�exp��5w1Ŵ� , �103�
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where we have denoted simply, W=HVTTTV. The coefficient
w1 is chosen to satisfy Eq. �98�. Since HVTTTV is nonsepa-
rable, one must solve the general equation-of-motion �40�
implicitly. However, since this error term is of order �4 and
has a small coefficient w1, any low-order scheme is suffi-
cient. �At �= P /10 000, the results are unchanged even with
the use of the naive Euler algorithm.� The following coeffi-
cients for Eqs. �103�:

v0 =
23

48
, v1 =

25

96
, t1 =

2

5
, t2 =

1

10
, �104�

u0 = �1 − ��
29

4608
, u1 =

�

2

29

4608
, �105�

� =
455

1102
, w1 = −

1

86400

are likely optimal for a fourth-order corrector algorithm with
effective sixth-order energy and precession errors. We will
refer to this as algorithm 4S. Its precession error is compared
to that of C and C� in Fig. 4. Algorithm 4S’s precession error
returns to 3.1�10−6 after one period and is never more than
8.9�10−3 at any time. Its error coefficients are

eTTTTV = eVTTTV =
1

28 800
= 0.000 034 7,

eTTVTV = eVTVTV =
53

437 760
= 0.000 121 1. �106�

The algorithm evolves in time preserving the constancy of
the modified Hamiltonian �89�,

H0�t� + �4H4�t� = H0�0� + �4H4�0� + O��6� , �107�

where H4 is the total fourth-order error function. It can be
extracted as

H4�t� − H4�0� = lim
�→0

1

�4 �H0�0� − H0�t�� . �108�

The right-hand side is plotted in Fig. 5. Algorithm C�’s error
is slightly higher than that of C, while the maximum error of
4S is approximately three times smaller than that of C. For a
more general class of fourth-order forward or gradient algo-
rithms, see Refs. �30–32�. For conventional nonforward cor-
rector algorithms, see Refs. �12,15–17�.

VI. CONCLUSIONS AND DIRECTIONS FOR FUTURE
RESEARCH

When solving physical problems, symplectic integrators
approximate the original Hamiltonian by a modified Hamil-
tonian with a well-defined error structure. For time-
reversible integrators, the error Hamiltonians come in pairs
in the form of �T ,Qi� and �V ,Qi�. There is a clear separation
between the mathematics of the algorithm, which fixes the
error coefficients eTQi

and eVQi
, and the physics of the prob-

lem, which determines the error Hamiltonians �T ,Qi� and
�V ,Qi�. In the past, when symplectic integrators are studied
as numerical methods, only the error coefficients are ana-
lyzed so that they can be set to zero. Here, by a well-chosen
example, we have shown that the physical effects of the error
Hamiltonians determine how the error coefficients should be
chosen. That is, the underlying physics of the problem deter-
mines the best algorithm for its own solution.

For solving celestial mechanics problems dominated by
Keplerian orbits, this work shows that the optimal integrators
at each order are symplectic corrector or processor algo-
rithms. For forward algorithms without any backward inter-
mediate time steps, this cannot be implemented without in-

FIG. 4. Rotation of the Laplace-Runge-Lenz vector for three
fourth-order integrators: algorithm C, algorithm C� with added gra-
dient term to force the rotation angle back to zero, and the true
symplectic corrector algorithm 4S. As with most integrators, algo-
rithm C’s precession error does not return to zero.

FIG. 5. Energy error functions of algorithms C, C�, and 4S.
Algorithm 4S’s maximum error is three times smaller than that of
C.
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cluding extra error Hamiltonians. In second order, it is easy
to include HVTV, which is just a local potential. In fourth
order, HVTTTV is a nonseparable Hamiltonian too cumber-
some to be solved in general. One must find ways of includ-
ing HVTTTV without solving it directly.

The analytical results for the precession error are useful
for verifying numerical calculations, however, it is a tedious
way of proving the equality ��TQi

=−��VQi
. It should be pos-

sible to prove this equality without explicitly evaluating in-
dividual precession angles.

We have shown in Ref. �10� that the phase error in the
harmonic oscillator vanishes when eTQi

=eVQi
. It was simply

not realized in that context that HTQi
and HVQi

are also gen-
erating exactly opposite phase angles. From these two ex-
amples, maybe one can prove that for a general Hamiltonian
with periodic orbits, only symplectic corrector algorithms

can yield periodic errors for both the action and the angle
variable.

Finally, this work demonstrated that one must rethink the
usual practice of minimizing the sum of square of the error
coefficients as a means of optimizing algorithms. The error
Hamiltonians are far from random. In the Kepler case, they
come in pairs with opposite signs and error coefficients
should be chosen to be pairwise equal. In other problems,
one must first do some error analysis before one can formu-
late the best algorithm for that problem.
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